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The electromagnetic phenomena of reflection and refraction at a dielectric surface will be treated by an alternative 
Schrödinger type quantum mechanical method. Thus, a new and simple deduction of Fresnel’s formulas is given, without 
any appeal to Maxwell’s equations, by using the concept of photon potential (7) associated to the refractive index of the 

medium. A Helmholtz-type equation (8) for a Plücker-Kayley hexavector 
→→→

Λ+= HiEQ , where εμ /=Λ  is the 
medium constant, describes completely the photon propagation through media and opens the way of much simplification in 
the computation of the photon passage through optoelectronic devices, as it will be shown in the present paper for the 
simple case of Fresnel relations and in a companion paper for the optical coupling [10].   
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1. Introduction 
 
It happens that physical phenomena, well understood 

by classical concepts and methods, can be much easier 
investigated by a rather different conceptual and 
mathematical instrument, borrowed by analogy from 
apparently not related phenomena. Thus, in the present 
paper, the electromagnetic phenomena of reflection and 
refraction at a dielectric surface will be treated by quantum 
wave mechanical methods and the corresponding Fresnel 
relations will be derived.   

As it is well known, the description of the interaction 
between the electromagnetic waves and the propagation 
medium can be achieved in many ways, by various 
physical models of both waves and media. Generally, 
inasmuch as the applications in electronics went from low 
frequency electromagnetic waves to higher and higher 
frequencies, up to the optical domain, the related theories 
followed the same path. However, difficulties arrose due 
to the fact that the Maxwell equations, so well suited at 
low frequencies, become inoperative at high frequencies, 
such as for X-rays, to say nothing about gamma-rays. To 
be more specific, by increasing the wave frequency, we 
have to conceive the light rather as photons than as 
electromagnetic waves, the optical domain laying 
approximately at the “midway” between these dual 
concepts. Indeed, the well known wave - particle duality 
expresses exactly this fact and allows us to use at optical 
frequencies both wave and photon concepts. The question 
naturally arrises if the photon concept can be used in 
ackowledged domains governed by the wave concept and 
by Maxwell equations, such as the refraction phenomenon. 
As far as it is deeply fixed in the scientific literature, the 
understanding of the refraction and diffraction phenomena 
is based on the concept of wave front and on the Huygens 
principle and has nothing to do with photons. This 
fundamental difficulty has been however exceeded in the 
second half of the XX-th century with the help of the 

concept of the quantum potential of the medium relative to 
the photon [1÷3], as it will be shown in continuation 
below. Moreover, Heisenberg [4] specifies that the 
tunneling phenomenon of quantum mechanics is 
completely analogous to that well known in optics of the 
total reflexion of a light beam on a thin metallic foil, an 
important fraction of the light crossing the foil when its 
thickness becomes of the order of the light wavelength. 

 
2. The potential of the medium 
 
The propagation of a scalar wave through a 

homogeneous, isotrope, transparent and non-dissipative 
dielectric medium is described in cartesian coordinates by 
the equation 
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Let us introduce in Eq.1 the quantum operators for 

momentum and energy 
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and take into consideration the fact that from Eq.2 we have 
for F the equation 
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From the equations (1)÷(4) it then results for ( )r

r
Φ  

the Helmholtz-type equation 
 

  ( ) ( ) 02 =Φ+ΔΦ rKr
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   (5) 
where 

  ω== h
h
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As far as 1>n , we can formally define a potential of 

the dielectric medium, relatively to a traversing photon, by 
the expression 
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Equation (5) thus becomes 
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For the case of a step-like potential, there appears an 

obvious formal analogy between the equation (8) (valid for 
a photon) and the Schrödinger equation (valid for an 
electron with charge e and rest mass 0m ), the latter 
equation being 
 

 ( ) ( ) 02 =Φ+ΔΦ rKr SSS
rr

      (9) 
where 

  .
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The electron with electric charge e couples with the 

step-like potential V, leading to a variation of the wave 
number SK  from the value 
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before the potential step, to the value SK  after crossing 
the step discontinuity. Consequently, there is an electron 
probability 'W  of crossing the potential step and an 
electron probability "W of  back scattering [5], namely 
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The close formal similarity of the Helmholtz type 

equations (5) and (9) explains the passage of a photon 
from vacuum into a transparent dielectric by a simple 
analogy with the passage of the electron through the 
potential step. The lack of electric charge and of rest mass 
of the photon is compensated here by the refractive index 
of the dielectric medium, with which the photon couples 
via Eq. (8). Consequently, there is a photon probability 

'W  of transmission into the dielectric and a photon 
probability "W of  reflecting back at the vacuum - 
dielectric surface, namely  
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Let us now turn back to equation (8) and consider the 
passage of a photon with momentum pr .  Thus, we get  

0
2

2
=Φ+ΔΦ

h

r
p                            (14) 

 
Eliminating the term ΔΦ between Eqs. (8) and (14) 

we obtain the equation of propagation of the photon 
through the dielectric 
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We conclude, therefore, that assumption (7) and 

equation (8) are correct and eventually lead to the 
probabilities 'W  and "W given by Eq.13 in a similar way 
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with that of the passage of an electron through a potential 
barrier. 

 
 
3. Dielectric interfaces 
 
When a particle crosses the interface between two 

media with potentials 1U  and 2U  respectively, the 
parallel momentum component to this interface is 
conserved [5], that is  
 
 

 
 

Fig. 1. The photon momenta in two dielectric media with 
12 nn < . 
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Taking further into account that npp 0
rr

= , we can 
write in terms of the angles of Fig. 1   
 
             2211 sinsin θθ nn =                  (18) 
 
hence the light refraction law. On the other hand, the 
normal momentum component to the interface between the 
two media is not conserved and is given by  
 

 2,12,12,1 cosθppx =   (19) 
 
or, in terms of the photon momentum in vacuum,  
 

 2,12,102,1 cosθnppx =                   (20) 
 

Using further Eq.15, we can say that the photon 

“sees” in the Ox direction the potentials 
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Taking into account Eq.20, the last expression 
becomes 
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or, with the help of the refraction law (18), we can express 
the potentials in terms of the sinus of the incidence angle, 
that is 
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4. The photons and their wave function 
 
Generally, the term of photon coordinate has no 

physical meaning and, consequently, the concept of 
photon wave function has not the meaning of an amplitude 
of spatial localization as meant in the non-relativistic 
quantum mechanics. However, the photon momentum is a 
measurable quantity and the photon wave function in the 
momentum representation has a deep meaning and allows 
computing the photon momentum and polarization 
probabilities [6]. Thus, let us consider in Fig. 2 the step 
potential in the  
 

 
Fig. 2. The step potential in the Ox direction, normal to  

the dielectrics interface. 
 

direction Ox normal to the dielectrics interface. The 
corresponding wave functions in the momentum 
representation, solutions of Eq.8, are 
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Here we assumed that the incident photon arrives at 

the interface from the left side of Fig. 2.  
 
 
5. Comments and conclusions 
 
The main purpose of the present paper consists in 

finding out a further theoretical motivation for the concept 
of “photon tunneling”. Though it has been already used in 
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some recent applications [7,8] and has been referenced in a 
book on quantum mechanics [9] and, indirectly, even by 
Heisenberg [4], the “photon tunneling” concept still misses 
a clear theoretical basis. This complex interaction of the 
light with dielectric media has found a completely 
satisfactory explanation in the framework of the classical 
electrodynamics, yet it has been reluctant so far to a 
formal quantum mechanical treatment, inasmuch as the 
photon has neither electric charge nor rest mass. 
Consequently, the photon cannot “feel” a potential step as 
it is the case for the electron. Fortunately, however, as it 
has been demonstrated in the present paper, the photon 
“feels” the variations of the refraction index of the 
medium as variations of the wave number, in a completely 
similar way as the electron does for the potential 
variations. This is the theoretical principle which converts 
the “photon tunnelling” from a simple metaphor (as 
currently believed) into a completely  operational opto-
quantum analogy. 

A simple application o this analogy will be the 
deduction of Fresnel formulas starting from the 
Helmholtz-type scalar tridimensional equation derived 
above  
 

                                    
( ) 0,,)( 22

0 =Φ+Δ zyxnK                  (26) 
 
where, however, the scalar function Φ  has to be replaced 

by the hexavector 
→→→

Λ+= HiEQ (where εμ /=Λ  is 
the medium constant) in order to ensure the transverse 
propagation of the electromagnetic waves. The details of 
the computation of reflection and transmission amplitudes 
for various polarizations are given in the Appendix. The 
advantages of the Schrödinger type treatment of the 
photon passage through optical media will be further 
demonstrated in the companion paper, devoted to optical 
coupling [10].  
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Appendix  
 

Let us denote the operator 22
0 nK+Δ  by 

                    
22

0 nKO +Δ=
∧

                           (A1) 
and write Eq. (26) as 

0=Φ
∧

O                                    (A2) 
 
On the other hand, from the Plücker-Kayley geometry of a 
free vectorial field [11], the associated hexavector  

       
→→→

+= QiQQ ImRe                       (A3) 
has the property 

0
2

=
→

Q                                 (A4) 
By identification, from Eq (A1) and Eq. (A2) we get 

   0ImRe =⋅
→→

QQ                          (A5) 
and 

0)(Im)(Re 22 =−
→→

QQ                (A6) 
 

We obtained in this way two invariants, a scalar one 
(A5) and a pseudoscalar the other one (A6).  

Let us further assume that in an homogenous, 
isotropic and transparent dielectric medium there are also 
two invariants of the electromagnetic field, namely 
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where εμ /=Λ  is the medium constant. These latter 
invariants can be framed within the Plücker-Kayley 
geometry by setting   

                                                                    
→→

≡ EQRe                                    (A9) 
and 

                         
→→

Λ≡ HQIm                             (A10) 
 

The electromagnetic field in the considered medium is 
characterized by 

- a polar vector 
→

E  with orto properties at reflexion 

(
→→

−≡ EE
o

), 

- an axial vector 
→

H with pseudo properties 

(pseudovector) at reflection (
→→

≡ HH
o

) and 

- a propagation vector 
→

P  with the property 
→→→

×≈ HEP  
 

so that 
→

E , 
→

H  and 
→

P  make up an ortho-grade trihedral 
angle. To these one should add the properties resulting 
from Maxwell equations, namely that the Helmholtz 

operator 
∧

O , Eq. A1, applied to 
→

E  and 
→

H wanishes, that 
is 

0=
→∧

EO                                 (A11)                                                            

0=
→∧

HO                                   (A12) 
 
When the light ray passes from a medium with the 
refractive index 1n in a medium with the refractive index 

2n , this operator exhibits a discontinuity            
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This discontinuity should not affect the energy and 
momentum balance and this requires certain continuity 

conditions for the electric 
→

E  and magnetic
→

H fileds. 

The system of the three equations, namely 0=Φ
∧

O , 

0=
→∧

EO  and 0=
→∧

HO  represents the essence of the 
analogy between quantum mechanics and optics.  

 
The Fresnel formulas result in a natural way from the 

continuity conditions of the tangential components of the 

vectors 
→

E  and 
→

H [12], namely 
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for the normal polarization to the incidency plane and, 
respectively, 
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for the parallel polarization to the incidency plane, where 
A, B, and C are the corresponding amplitudes of the 
incident, reflected, and transmitted waves.  


